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Abstract. Choice models for populations of agents on graphs are studied in terms of statistical thermo-
dynamics. Equations of state are derived and discussed for different connectivity schemes, utility approxi-
mations, and temperature and volume regimes. Analogies to ideal classical and quantum gases are found
and features specific for network systems are discussed.
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1 Introduction

Ensembles of active, choice-making individuals represent
a natural field of extension for statistical physics. This
broadening of theory’s scope is interesting for a physicist
because of a new quality brought to the study by auton-
omy of system’s constituents in making decisions. In ad-
dition, it is not a priori clear how to formulate an analog
of the classical, equilibrium Boltzmann-Gibbs thermody-
namics for systems where the notion of physical energy is
not defined. How probability measure on the state space
is defined then?

Choice models, being part of decision theory, are
widely applied to economics, psychology and social sci-
ences. For example, models used in demand analysis of
transportation and communication usually assume that
demand represents the result of decisions of individuals in
the population. These decisions consist of choices made
among finite sets of possibilities. Consider decision to be
taken by potential passenger willing to travel between two
nodes. This client has to choose among offers of carriers,
accounting for many factors relevant for decision, as e.g.
the timetable and how it relates to his needs, durations of
travels, fares, numbers of stops and changes on the route,
probability of delays, declared and expected quality of ser-
vice and many other aspects, too numerous to itemize. In
order to quantify such process of decision making, one in-
corporates discrete choice models in hope of better under-
standing and predicting behaviour of such complex sys-
tem as transportation network and thus obtaining hints
for marketing and revenue management.

Provided one knows how to formulate statistical ther-
modynamics for populations of agents, our understand-
ing and predicting power for such systems is enhanced,
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as compared to choice models. Having probability dis-
tributions in equilibrium one calculates thermodynamic
potentials and response functions, and their evolutions
with intensive variables as temperature, fugacity or pres-
sure. Moments of extensive variables, directly related to
thermodynamic potentials, have clear economic value, e.g.
market and route occupancies or fluctuations of numbers
of clients on them. In addition, monitoring collective phe-
nomena and phase transitions is feasible using thermody-
namic formalism. Such tools are lacking in economy and
social sciences.

In our previous papers we demonstrated how the sys-
tem consisting of a set of decision makers on a network
can be treated in the framework of equilibrium statistical
thermodynamics and its generalization using Rényi en-
tropies [1,2]. Applying thermodynamic formalism one tac-
itly assumes existence of stationary regime and states opti-
mal with respect to entropy. Finding thermal equilibrium
is therefore related to the class of optimization problems,
in particular to optimal path distribution on the network.
Problems of optimal path search in discrete systems, quite
often met in condensed matter, lattice field theory, net-
works of molecular reactions, telecommunication and en-
ergy routing, were often treated non-thermodynamically
(cf. e.g. Refs. [3]). We believe that application of Metropo-
lis algorithms to this class of problems could be also effec-
tive. Interesting for us, however, was not the optimization
itself but studying global properties of the system in qua-
sistatic approximation, assuming ergodic hypothesis. For
this we found thermodynamic approach to be well suited.

Building thermodynamic description, the central point
was to find a probability measure on the event space.
We studied analogy between the utility function, used to
quantify decision likelihood, and the total energy func-
tion describing probability of states in physics. We found
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that for a properly defined system and utility function this
analogy can be made exact. In particular, this concerns
the properties of additivity and extensivity of utility, and
entails incorporation of the Boltzmann-Gibbs state proba-
bility measure, as for physical systems with no long-range
correlations.

Building this analogy, however, we have not made it
complete and never arrived to the equation of state for
populations of agents on graphs. In this paper, after re-
capitulation of definitions of the system and statistical
ensembles in Section 2, we introduce another extensive
variable for the system, the market and network volume,
and the conjugate intensive variable being an analogue
of the pressure, and discuss equation of state of the net-
work, both in general and for specific network topologies.
Analogies to behaviour of classical and quantum gases are
highlighted, wherever found.

2 The system and the statistical ensembles
Our system S consists of a network G, represented by a
set of directed graphs, and a set of agents willing to find a
directed route from the origin node O to the destination
node D. Each ordered pair (OD) and set of all Hamilton
routes1 from O to D constitute, adopting economic termi-
nology, the k-th market and is represented by a directed
graph Gk (k = 1, . . . , M , M denoting the total number
of ordered (OD) pairs in the network). The whole net-
work is the union of market graphs, G = G1 ∪ . . . ∪ GM .
Market graphs can overlap, e.g. two subgraphs Gi and Gj

can have common nodes or edges. Such decomposition of
the market graph G induces decomposition of the system
S into the sum of markets S = S1 ⊕ . . . ⊕ SM , where ⊕
stands for the sum of graphs and agents ascribed to cor-
responding graphs. Figure 1 illustrates decomposition of
an example system into markets. Each market (OD) can
be further split into routes [O, C1, . . . , CL, D] in the same
way, e.g. for the network from Figure 1 decomposition is
the following:

(1, 2) = [1, 2]
(1, 3) = [1, 2, 3]⊕ [1, 2, 4, 5, 3]
(1, 4) = [1, 2, 4]⊕ [1, 2, 3, 5, 4]
(1, 5) = [1, 2, 3, 5]⊕ [1, 2, 4, 5]
(2, 3) = [2, 3]⊕ [2, 4, 5, 3]
(2, 4) = [2, 4]⊕ [2, 3, 5, 4]
(2, 5) = [2, 3, 5]⊕ [2, 4, 5]
(3, 4) = [3, 2, 4]⊕ [3, 5, 4]
(3, 5) = [3, 5]⊕ [3, 2, 4, 5]
(4, 5) = [4, 5]⊕ [4, 2, 3, 5]

plus all reversed (OD) → (DO) pairs.

1 A Hamilton route is a path between two vertices of a graph
that visits each vertex exactly once. Restriction to Hamilton
routes is reasonable for applications to communication and
transportation problems where loops should be avoided. Gen-
eralization of the formalism to all conceivable paths on a graph
is straightforward, however we did not try to find analytic so-
lutions in this case.

Fig. 1. Decomposition of the communication network into
markets, where only examples of representative markets are
shown. The full list of markets and their decomposition into
Hamilton routes is given in the text.

The state of the system is defined by choices of routes
performed by all agents for all markets. The state space
consists of all possible distributions of all agents for all
markets.

We consider so called disaggregate model where agents
decide independently of each other. This assumption is
not restrictive for a wide class of applications. Notion of
an agent can be often redefined and refer to groups of
agents taking decisions as a whole, and only mutual inde-
pendence of groups is relevant. Generally, the mechanism
of group decision making can affect utility function. We
do not pretend to discuss rather vast subject of group de-
cisions and refer to one of recent reviews [4].

The utility Uik
of the ik-th agent’s choice (ik =

1, . . . , Vk, Vk being the number of choice alternatives on
the k-th market and k = 1, . . . , M the market index) is
a finite, real random variable on the choice set and is de-
fined axiomatically using the preference-indifference oper-
ator [5]. This operator relates any pair of alternatives from
the choice set and is assumed to be reflexive and transi-
tive, thus ordering the choice set linearly. The choice set is
assumed to be finite which guarantees existence of the best
alternative. These properties of the preference-indifference
operator induce the linear order in the real-valued utili-
ties and ensure existence of the largest utility for the most
preferred alternative. Utilities are therefore upper-bouned
and disutilities, defined as negative utilities, are bounded
from bottom.

The concept of utility dates back to the XVIII-th and
XIX-th century utilitarian’s economy and its eminent rep-
resentative Jeremy Bentham. In its further evolution it
acquired quantitative and strict meaning, mainly due to
Morgentern and von Neumann [6]. In order to use it in
specific applications of choice models, one has to postu-
late a lot from outside of the theory and to find an effec-
tive way to either derive it from any fundamental or gen-
eral theory or to parametrize it and estimate from data.
For example, efficient estimates of utility in marketing is
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done in the framework of conjoint methods [7]. Deriva-
tion of the utility function from first principles represents
major theoretical problem because of lack of fundamen-
tal theory of human behaviour. Normally, one has to rely
on partially justified models using power series approxi-
mations for utility functions, often restricted to linear or
quadratic terms (cf. Ref. [8]), and finding empirically rel-
evant variables and estimators for parameters, if any data
are available at all. For a broader discussion we refer to
e.g. reference [9].

Apart from those problems, numerous conceptual dif-
ficulties arise when applying utility functions to quantify
the behaviour of the choice makers and to predict them.
In particular, classical Bentham’s approach of maximiz-
ing the overall utility, integrated over individuals, when
taking market decisions, is often a subject of serious ob-
jections [10].

For each individual, utility is reduced whenever choice
is performed, similarly to the wave-packet reduction in
the process of quantum-mechanical measurement. Conse-
quently in this paper we denote utility as a random vari-
able by U and its particular instance, e.g. after making a
choice, by u. For disutilities we adopt notation Ū and ū,
respectively.

The system consists of N =
∑M

k=1 Nk agents, where
Nk stands for the number of agents on the k-th market.
Individuals’ disutilities Ūik

= −Uik
contribute additively

to the overall network’s disutility Ū =
∑Vk

ik=1 Ūik
. If mar-

kets are assumed to be atomic subsystems and agents do
not interact then additivity of the overall system’s disu-
tility is ensured by construction [1]. Indeed, decompose
the system S into the sum of subsystems (markets) Sk,
S = S1 ⊕ . . . ⊕ SM . Then, by construction, additivity
condition is fulfiled Ū = Ū1 + . . . + ŪM (for more de-
tailed discussion of additivity cf. Ref. [11]). Furthermore,
for Ū = O(Nα), α ≤ 1, disutility is also extensive.

In order to follow classical Boltzmann arguments lead-
ing to the exponential probability P(Ū = ū) ∼ exp(−βū),
besides additivity we also assume conservation of disutil-
ity for the whole system. Validity of this assumption is
traditionally matter of debate (cf. e.g. [12]). In economy
one normally does not contest it for utility being function
of money or any other conserved commodity.

We further assume existence of the stationary regime
and existence of the first moment of disutility, 〈Ū〉 < ∞,
at least in the limit of long times. This ensures existence of
the equilibrium temperature Teq = 1/βeq in that regime.

We consider the canonical and the grand canonical en-
sembles of systems (cf. Ref. [1]). In the canonical ensemble
the total number of agents N is fixed and the partition
function can be written as

Z(β) =
M∏

k=1

Z1
k(β)Nk , (1)

where Z1
k(β) stands for the partition function for the k-th

market with one agent on it and Nk = 0, 1, . . . ,∞. Equa-
tion (1) assumes non-subjectivity of the utility, i.e. that
utility of given route is the same for any decision maker.

For the grand canonical ensemble, or random N , one in-
troduces another Lagrange multiplier, called the chemical
potential µ, and the grand partition function reads

Ξ(β, µ) =
M∏

k=1

1
1 − Xk

, (2)

where Xk = eνZ1
k(β), ν = βµ. Moments of extensive vari-

ables and the entropy are given by the partition functions
Z and Ξ, and their derivatives over β and ν.

In order to make thermodynamic description complete,
we define the volume Vk of the k-th market as the to-
tal number of choice alternatives available for each agent
on this market, and the total volume of the system as
V =

∑M
k=1 Vk. Such defined total volume is additive

by construction. Using market volumes, partition func-
tions (1, 2) can be written as

ln Z(β; N , V ; M) =
M∑

k=1

Nk ln
Vk∑

jk=1

e−βūjk (3)

and

ln Ξ(β, ν; N , V ; M) = −
M∑

k=1

ln(1 − eν
Vk∑

j=1

e−βūjk ), (4)

where ūjk
stands for disutility of the jk-th agent’s

choice on the k-th market, N = (N1, . . . , NM ), V =
(V1, . . . , VM ).

We define the pressure as

p =
1
β

( ∂

∂V
ln Z(β, V )

)

β
(5)

for the canonical ensemble and

p =
1
β

( ∂

∂V
ln Ξ(β, ν, V )

)

β,ν
(6)

for the grand canonical ensemble. Such defined pressure is
naturally interpretable thermodynamically as an effect of
the size of the choice set on the free utility F

p = −
(∂F

∂V

)

β(,ν)
. (7)

Since volumes are discrete variables, differentiation over
them has to be defined with care. We adopt an approach
of the finite-difference calculus for functions defined on
an equally-distant grid with a unit space. Approximations
for the m-th order derivatives operators can be expressed
using the forward (backward)-difference operators ∆ (∇)

∂m

∂xm
=

( ∞∑

n=1

(−1)n−1

n
∆n

)m

=

( ∞∑

n=1

1
n
∇n

)m

, (8)
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where for any test function f(x) (x ∈ Z1), ∆f(x) =
f(x + 1) − f(x) and ∇f(x) = f(x) − f(x − 1). Using the
forward- or the backward-difference operators expansion
depends on which one gives more accurate approximation
to the derivative’s values and this normally depends on
the distance of x from the domain’s edge.

3 Partition functions and thermodynamic
variables

3.1 The cumulant expansion

Equations (5, 6) express the pressure p via β, ν and vol-
ume V , and lead directly to equations of state. Depend-
ing on the temperature regime, one can expand partition
functions around any characteristic temperature β0 and
fugacity ν0 of the system. The β0 and ν0 are determined
by the mean utility and number of agents.

The ln Z and lnΞ are generating functions for the cu-
mulants of Ū and N [13]. The lnZ1

k can be expanded as

ln Z1
k(β, β0, Vk) =

∞∑

n=0

〈〈Ūn
k (β = β0, Vk)〉〉 (β0 − β)n

n!
, (9)

where the cumulants of disutility can be related to ordi-
nary moments (cf. e.g. [14]), e.g.

〈〈Ū〉〉 = 〈Ū〉,
〈〈Ū2〉〉 = 〈Ū2〉 − 〈Ū〉2,
〈〈Ū3〉〉 = 〈Ū3〉 − 3〈Ū2〉〈Ū 〉 + 2〈Ū〉3,

. . . . . . etc. (10)

For the grand canonical ensemble, expansion of Ξk reads

ln Ξk(β, β0, ν, ν0, Vk) =
∞∑

n,m=0

〈〈Ūn
k (β = β0, ν = ν0, Vk)

× Nm
k (β = β0, ν = ν0, Vk)〉〉

× (β0 − β)n

n!
(ν − ν0)m

m!
, (11)

where the bivariate cumulants can be related to bivariate
moments [14], e.g.

〈〈ŪN1〉〉 = 〈ŪN〉 − 〈Ū〉〈N〉,
〈〈Ū2N1〉〉 = 2〈Ū〉〈N〉2 − 2〈N〉〈ŪN〉 − 〈Ū〉〈N2〉

+ 〈Ū2N〉,
. . . . . . etc. (12)

3.2 The high-temperature regime

Applying the cumulant expansion around β = 1/T = 0
for fixed ν and calculating the pressure (6) we get

p =
M∑

k=1

∂Vk

∂V

( 1
β

〈Nk〉
Vk

− ∂〈Ū〉
∂Vk

∣
∣
∣
β=0

+
β

2
∂ Var(Ū)

∂Vk

∣
∣
∣
β=0

)

+
1
β

(∂ ln Ξ

∂M

)

β,ν,N

∂M

∂V
. (13)

For M = 1 the first term in equation (13) corresponds
to the equation of state of the ideal classical gas: pV β =
〈N〉. For fixed M also ∂M/∂V = 0. Corrections to the
ideal case depend on the network topology and the utility
function.

3.3 Temperature evolution of the pressure

As found in reference [2], using Rényi entropies, defined
for any q ∈ R (J standing for number of states)

Iq =

{
1

1−q ln
∑J

j=1 pq
j , q 
= 1

−∑J
j=1 pj ln pj , q = 1

(14)

one relates partition functions at different temperatures,
with q being scaling parameter

ln Ξ(qβ, qν, V ) − q ln Ξ(β, ν, V ) = (1 − q)Iq(β, ν, V ).(15)

and similarly for Z.
Using equation (5), this leads to more general equation

p(qβ, qν) = qp(β, ν) +
1
β

(1 − q)
∂Iq(β, ν, V )

∂V
, (16)

being not only equation of state but determining also the
temperature evolution of the pressure.

4 Applications

4.1 Networks of increasing path lengths: analogues
to quantum-mechanical systems

Assuming disutility function depending only linearly or
quadratically on the topological (OD) distance, for Hamil-
ton networks containing routes of all lengths one observes
direct analogies to quantum-mechanical systems: quantum
harmonic oscillator and the ideal quantum gas.

Networks containing routes of all lengths may consist
of one market (one (OD) pair) or many markets (more
than one (OD) pair). Such classes of networks are very
broad, even excluding non-compact and tadpole graphs.
Examples of one-market and multi-market networks are
given in Figures 2 and 3, respectively. Dependence of the
market volume V on the number of nodes L is

√
L (upper

left in Fig. 2), linear for one-market networks (lower left in
Fig. 2), and quadratic for multi-market networks (upper
left in Fig. 3) which makes these networks rather easy to
simulate.

Assume agent’s disutility proportional to the number n
of route segments, Ūn = ū0+nū1 (n = 0, 1, . . .), where ū0,1

are constants. For one agent, this model exhibits analogy
to the one-dimensional quantum harmonic oscillator with
the energy spectrum En = �ω(1/2 + n). For N agents,
additivity of disutility implies Ūn = ū0 + ū1

∑N
i=1 ni, n =

(n1, . . . , nN ), and is the same as the energy spectrum of
the N -dimensional oscillator En = �ω(N/2 + n1 + . . . +
nN). The values of constants ū0 = 0, ū1 = 1 are assumed
without loss of generality.
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Fig. 2. Example network topologies with one market and
route lengths increasing linearly in steps of one.

Fig. 3. Example topologies for multi-market networks of
routes with lengths increasing linearly in steps of one.

For any oscillator-like topology, excluding n = 0 routes
corresponding to tadpole graphs, the statistical sum reads

lim
V →∞

Z(β, V ) = lim
V →∞

(1 − e−βV

eβ − 1

)N

=
( 1

eβ − 1

)N

(17)

for β > 0. Using first 3 terms of the expansion (9) one
gets the equation of state

p =
N

βV
− N

2
+

N

12
βV. (18)

The first term of equation (18) corresponds to the ideal
classical gas and it dominates at high temperature. The
sign of correction to the ideal case is positive or negative,
for βV ≥ 6 or βV < 6, respectively, for which we hardly
see any analogy in gas dynamics. At the equilibrium tem-
perature β = ln[Ū/(Ū − N)] the pressure is equal to

p =
N

Ū/(Ū − N)V − 1

∼ N
(
1 − N

Ū

)V

for V  1. (19)

Fig. 4. Maximum-connectivity network.

Considering random number of agents N , at the equilib-
rium temperature β = ln[〈Ū 〉/(〈Ū〉 − 〈N〉)] and equilib-
rium fugacity ν = ln[〈N〉2/(〈Ū〉 − 〈N〉)(1 + 〈N〉)], the
equation of state reads:

p =
〈N〉

[〈Ū〉/(〈Ū〉 − 〈N〉)]V − 1
. (20)

Let us assume agent’s disutility proportional to the
square of the route length, Ūn = ū2n

2. For the topologies
of Figure 3 and for one agent this model corresponds to the
ideal quantum gas in a one-dimensional box and for the
N -agent disutility Ūn = ū2

∑N
i=1 n2

i , the analogy extends
to the N -dimensional box. Depending on the number of
agents allowed on each market, N = 0, 1, . . . ,∞ or N =
0, 1 (Pauli principle) and taking ū2 = 1, one reproduces
the case of the Bose-Einstein or Fermi-Dirac statistics,
respectively, for which the grand partition functions are
(cf. e.g. Ref. [15])

ln Ξ(β, ν) =
{−∑

n ln(1 − eνe−βŪn), bosons
∑

n ln(1 + eνe−βŪn), fermions.
(21)

The Fermi-Dirac case can be interpreted as treating the
whole group of agents as a single decision maker acting on
the market (N = 1) or remaining passive (N = 0). More
general dependence of Ū on n may also correspond to non-
ideal quantum systems or different boundary conditions,
or topology different than in Figure 3.

Formulae for Rényi entropies of quantum gases are
given in reference [2] and can be almost directly used
for the evolution equation (16). Explicit summation over
states has to be performed, depending on the network
topology (cf. Fig. 3).

4.2 Maximum-connectivity networks

For the maximum-connectivity or complete network (cf.
Fig. 4) all M = L(L − 1) markets are topologically iden-
tical. Within linear utility approximation one finds

Z1
k(β) =

L−1∑

l=1

(L − 2)!
(L − 1 − l)!

e−βū1l (22)

and

Vk = (L − 2)!
L−2∑

l=0

1
l!

. (23)
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For L  1 and ū1 = 1 one approximates V = MVk �
eL2L! and, keeping only leading terms in L, arrives to the
equation of state

p =
{

N
βV − N

V ln L , L ≥ eβ

0, L < eβ.
(24)

For high temperature, β ≤ ln L, and lowly populated net-
work, N � V ln L, the equation of state of the ideal classi-
cal gas is recovered from equation (24). Correction to the
ideal case is always negative, as for attracting molecular
forces and quantum Bose statistics.

In general, equation of state for high temperature can
be derived from equation (13). For fixed number of mar-
kets, i.e. the number of markets independent of size of
the choice set, ∂M/∂V = 0, the formula for ideal gas
is recovered. For variable M we find the volume V =
eL(L − 1)Γ (L − 1, 1), where Γ (., .) stands for incomplete
Euler gamma function [13], and accounting only for terms
at 1/β in expansion (13) we get

p =
N

βV
+

N

βe(2L − 1)Γ 2(L − 1, 1)
∂Γ (L − 1, 1)

∂L
. (25)

Second term in (25) represents the finite-L correction to
the ideal-gas term N/βV and it vanishes for L → ∞, in
agreement with (24).

Interesting property of network dynamics can be il-
lustrated when calculating pressure in the simplest non-
trivial case of the complete L = 3 graph, being at the same
time the oscillator-like network with two routes, V = 2.
The pressure depends on the model we choose: keeping
terms proportional to the 0-th and −1-st powers of β in
equations (18) and (24) one obtains two different solutions

p =

{
N
βV − N

4 , maximum-connectivity
N
βV − N

2 , harmonic oscillator.
(26)

This is understandable because the pressure depends on
the change of utility with volume and not on the volume
itself. Similar behaviour we observe in a physical system
where the pressure depends on the way the volume was
changed. Moreover, the pressure of physical gas depends
on its statistical properties, e.g. ideal fermions exhibit
higher pressure than bosons in the same conditions. In our
case network topology affects the properties of the system.
Two ways of evolution of network topology leading to the
same final state are shown in Figure 5.

4.3 Hub-and-spoke networks

For hub-and-spoke networks, being often met in local air-
line transportation [8] or resource brokerage in Grid com-
puting [16], there are only two classes of topologically
different markets: M1 = L2 − 3L + 2 spoke-spoke and
M2 = 2(L − 1) spoke-hub, as shown in Figure 6.

The partition function

Z(β) =
M1∏

k1=1

e−2βū1Nk1

M2∏

k2=1

e−βū1Nk2 , (27)

Fig. 5. Two sequences of networks evolving towards trian-
gle network by decreasing numbers of nodes and keeping their
topological identity: maximum-connectivity network (lower)
and harmonic oscillator network (upper).

Fig. 6. Hub-and-spoke network.

where N1(2) are agents’ populations on both types of mar-
kets, does not depend on the volume V = L(L − 1) and
thus the pressure is zero. However, the grand partition
function (ū1 = 1)

Ξ(β, ν) =
1

(1 − eν−2β)M1

1
(1 − eν−β)M2

(28)

does depend on the volume and leads to interesting equa-
tion of state. The complete formula is very lengthy and
we quote here only its large-volume limit

p =
〈N〉
βV

+
〈N〉(1 − eβ)

βV 3/2
, (29)

reducing further in the high-temperature regime to

p =
〈N〉
βV

− 〈N〉
V 3/2

. (30)

The same result can be obtained directly from equa-
tion (13). For 〈N〉 � V 3/2 formula (30) describes ideal
classical gas. Positivity of the pressure (V > β2) is en-
sured in this approximation because β2 � 1 and V > 1.

5 Discussion and final remarks

Systems of choice makers on networks can be treated ther-
modynamically, using utility function in a way analogous
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to the energy function and defining the system volume
as the number of choice alternatives. Working within the
framework of equilibrium thermodynamics we found equa-
tions of state and discussed them in detail for specific net-
work topologies, utility functions and in different temper-
ature regimes.

For a single-market and multi-market networks with
linear utilities and route lengths covering all integer num-
bers with no degenaracy, close resemblance to the one-
or multi-dimensional quantum harmonic oscillator was
found. Equation of state, besides the ideal-gas terms, con-
tains corrections with no clear analogy in gas dynamics.
For a quadratic utility function the system exhibits simi-
larity to the ideal boson or fermion gas, depending on the
number of agents allowed on one market.

In case of the maximum-connectivity network, apart
from deriving equation of state, we also discussed its de-
pendence on the evolution of the connectivity scheme with
volume. This property we found to be a particularly inter-
esting example of how the network structure determines
global properties of the system. It may suggest a possi-
bility of phase transitions driven by variation of network
topology and, we believe, deserves further investigation.

We had a closer look at the hub-and-spoke connectiv-
ity scheme as being important for applications. Analytical
solutions for such system can be found and they simplify
in the large-volume limit where corrections to the ideal-
gas terms are negative. They are exponential with 1/β
quenching in inverse temperature and depend on the vol-
ume as V −3/2.

In future work, more attention is certainly called
for elucidating the role of possible correlations between
agents, correlations between markets and of the form of
utility function for this class of complex systems. Any
mechanism giving dependence between subsystems, either
explicit correlation of choice alternatives [17] or interac-
tion term between utilities [18], or limited node or link
transmitivity, may result with non-additivity of utility and
eventually need for using non-extensive thermodynam-
ics [19]. In particular, it is natural to expect a non-linear
reinforcement of utility for the system of two agents mak-
ing the same choice. Investigation of correlations between
markets, either coming from explicit interactions between
agents or from network constraints, should proceed along
two lines. First, for weak correlations between subsystems
one stays in the framework of Boltzmann-Gibbs thermo-
dynamics and accounts only for agent interactions. Sec-
ond, in case of unavoidable non-extensivity, the whole for-
malism has to be reworked using power-law probability
distributions. It would be very interesting if any nontrivial
modification of the topology-dependence of the equation
of state is observed, as compared to found in this work.
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